Bone microdamage, remodeling and bone fragility: how much damage is too much damage?
نویسندگان
چکیده
Microdamage resulting from fatigue or 'wear and tear' loading contributes to bone fragility; however, the full extent of its influence is not completely understood. Linear microcracks (∼50-100 μm) and diffuse damage (clusters of sublamellar-sized cracks) are the two major bone microdamage types, each with different mechanical and biological consequences. Healthy bone, due to its numerous microstructural interfaces and its ability to affect matrix level repair, deals effectively with microdamage. From a material standpoint, healthy bone behaves much like engineering composites like carbon-fiber reinforced plastics. Both materials allow matrix damage to form during fatigue loading and use microstructural interfaces to dissipate energy and limit microcrack propagation to slow fracture. The terms fracture toughness and 'toughening mechanism', respectively, describe mechanical behavior and microstructural features that prevent crack growth and make it harder to fracture a material. Critically, toughness is independent of strength. In bone, primary toughening features include mineral and collagen interfaces, lamellae and tissue heterogeneity among osteons. The damage tolerance of bone and other composites can be overcome with sustained loading and/or matrix changes such that the microstructure no longer limits microcrack propagation. With reduced remodeling due to aging, disease or remodeling suppression, microdamage accumulation can occur along with loss of tissue heterogeneity. Both contribute additively to reduced fracture toughness. Thus, the answer to the key question for bone fragility of how much microdamage is too much is extremely complex. It ultimately depends on the interplay between matrix damage content, internal repair and effectiveness of matrix-toughening mechanisms.
منابع مشابه
(micro-CT) imaging, and voxel-based finite element modeling to detect trabecular bone microdamage and microfracture and estimate the associated microstructural stresses and strains. METHODS Cylindrical reduced-section specimens were prepared from skeletally mature bovine proximal tibial trabecular bone
INTRODUCTION The onset of trabecular bone damage is a local phenomenon, governed by tissue-level material properties, and architecture at the initiation site. Different modes of microfracture (bending, buckling, and shearing) and microdamage (single, parallel, and cross-hatched cracks) can occur [1]. The initiation of bone damage can lead to two scenarios. In the first case, normal repair proce...
متن کاملVariability of in vivo linear microcrack accumulation in the cortex of elderly human ribs
Excessive accumulation of microdamage in the skeleton in vivo is believed to contribute to fragility and risk of fracture, particularly in the elderly. Current knowledge of how much in vivo damage accrual varies between individuals, if at all, is lacking. In this study, paired sixth ribs from five male and five female elderly individuals (76-92 years, mean age = 84.7 years) were examined using ...
متن کاملBisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don't know.
The bisphosphonates (BPs) have been useful tools in our understanding of the role that bone remodeling plays in skeletal health. The purpose of this paper is to outline what we know, and what is still unknown, about the role that BPs play in modulating bone turnover, how this affects microdamage accumulation, and ultimately what the effects of these changes elicited by BPs are to the structural...
متن کاملMicrodamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis.
Damage accumulation in living tissues occurs when the rate of damage formation is greater than the rate of damage repair. For very large increases in the loading rate of bones, this can result in "stress fractures" due to the growth and coalescence of fatigue related microdamage. At lower increases of loading rates, the damage accumulation process is halted because there is time for adaptive bo...
متن کاملAge-related change in the damage morphology of human cortical bone and its role in bone fragility.
Application of cyclic loading results in the formation of distinct strain-dependent microdamage morphologies. It is still unknown; however, how the morphology of microdamage affects age-related increase in bone fragility. In this study, four-point bending fatigue tests were conducted on aging human bone (age 26 to 89) in conjunction with histological evaluation of the resultant tensile (diffuse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BoneKEy reports
دوره 4 شماره
صفحات -
تاریخ انتشار 2015